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Abstract: Efficient microalgal biomass harvesting is a major bottleneck in the 

commercial utilization of microalgae for biofuels, nutraceuticals, and wastewater 

treatment. This study optimizes the flocculation parameters for Chlorella sp. and 

Monoraphidium sp. using Response Surface Methodology (RSM) to enhance 

sedimentation efficiency while minimizing chemical usage. Growth kinetics analysis 

identified the optimal harvesting times for both species, after which flocculation 

efficiency was systematically evaluated under varying ferric chloride (FeCl₃) 

concentrations, pH levels, and salinity conditions. The optimized conditions for 

Chlorella sp. were FeCl₃ at 49.4 mg L⁻¹, pH 5.6, and salinity 18.2 ppt, achieving a 

flocculation efficiency of 93.6%. For Monoraphidium sp., the highest efficiency 

(89.2%) was obtained at FeCl₃ 66.1 mg L⁻¹, pH 5.6, and salinity 11.5 ppt. The RSM 

model exhibited strong predictive accuracy, with an R² value of 99.07% for Chlorella 

sp. and 94.83% for Monoraphidium sp., confirming its reliability in optimizing biomass 

recovery. Statistical analysis indicated that pH and flocculant concentration were the 

most influential factors governing flocculation efficiency. These findings demonstrate a 

cost-effective and scalable approach for improving microalgal harvesting, reducing 

energy-intensive processing, and enhancing the economic viability of microalgae-based 

bioproducts. 

Keywords: Chlorella sp., Monoraphidium sp., Biomass recovery modeling, Bioremediation, 

Sustainable bioprocessing 

Introduction 

Microalgae are a versatile and sustainable 

biological resource with diverse applications in 

pharmaceuticals, biofuels, wastewater 

treatment, and food industry. Their rapid growth 

rate and high biochemical composition, 

including valuable lipids, proteins, and 

carbohydrates, make them an attractive 

candidate for biotechnological exploitation. 

Among the many species of microalgae, 

Chlorella sp. has gained significant attention for 

its pharmaceutical and nutraceutical potential, 

while Monoraphidium sp. has demonstrated 

promise in biofuel production and 

bioremediation applications [1, 2]. Despite their 

potential, large-scale commercialization of 

microalgae-based products is hindered by the 

inefficiency and high cost associated with 

biomass harvesting [3]. 

Conventional microalgae harvesting 

techniques, such as centrifugation, flotation, and 

sedimentation, present several challenges, 

including high energy consumption, low 

efficiency, and scalability constraints [4]. 

Flocculation has emerged as a promising 

alternative, offering a cost-effective and 

efficient approach for biomass recovery [5]. 

Among the commonly used flocculants, ferric 

chloride (FeCl₃) is particularly effective in 

aggregating microalgal cells and facilitating 

sedimentation. However, optimizing the 

flocculation process requires a systematic and 

empirical approach to maximize efficiency 
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while minimizing environmental and economic 

drawbacks [6]. 

The inefficiency of current large-scale 

microalgae harvesting methods underscores the 

urgent need for sustainable and cost-effective 

alternatives. This challenge is particularly 

significant for both commercial and 

environmental applications, including biofuel 

production, nutraceuticals, and wastewater 

remediation [3]. Enhancing harvesting 

efficiency not only improves the economic 

feasibility of microalgae-based industries but 

also supports the role of microalgae in 

environmental cleanup efforts. Addressing this 

challenge necessitates advanced optimization 

strategies to refine harvesting techniques and 

enhance their scalability [7, 8]. 

The primary objectives of this study are to 

evaluate the growth performance of Chlorella 

sp. and Monoraphidium sp. under controlled 

cultivation conditions, determine optimal 

growth and harvest times for efficient biomass 

accumulation, assess flocculation efficiency 

under varying conditions, and optimize the 

flocculation process using RSM to enhance 

sedimentation efficiency. By improving biomass 

recovery efficiency, this research contributes to 

the advancement of sustainable biotechnological 

applications, aligning with global sustainability 

goals. The integration of RSM in microalgae 

harvesting strategies not only enhances 

economic viability but also fosters 

environmentally responsible practices, making 

microalgae-based solutions more accessible and 

impactful for various industrial and 

environmental applications. 

Materials and methods 

Microalgae Cultivation and Growth 

Evaluation 

The microalgae isolates used in this study -

Chlorella sp. and Monoraphidium sp.- were 

obtained from the Mansoura Algal Culture 

Collection at the Algae Biotechnology & Water 

Quality Lab at Mansoura University. Cultures 

were cultivated in Bold’s Basal Medium (BBM) 

[9] under controlled laboratory conditions, to 

ensure optimal growth, with a light intensity of 

100 μmol photons m⁻² s⁻¹, a 16:8-hour light-

dark cycle, and a temperature of 25 ± 1°C. 

Aeration was continuously provided to ensure 

homogeneous mixing and prevent sedimentation 

using sterile air pumps fitted with 0.22 μm 

filters to prevent contamination [10]. 

Microalgal growth was monitored by 

measuring the optical density (OD) at 680 nm 

daily using a spectrophotometer, allowing for 

real-time assessment of culture density changes 

over time. The specific growth rate (μ) was 

calculated using the following equation [11, 12]: 

µ = 
ln(𝑎2) − ln(𝑎1)

𝑡2 − 𝑡1
 

where (𝑎1) represents the initial culture 

absorbance at time (𝑡1), and (𝑎2) represents the 

culture absorbance at a later time (𝑡2). The 

difference between (𝑡2) and (𝑡1) represents the 

duration of the exponential growth phase. 

In addition to OD measurement and specific 

growth rate calculation, dry biomass was 

quantified by harvesting microalgal cultures at 

the end of the incubation period, and biomass 

was collected via filtration using pre-weighed 

Whatman GF/C filters. The retained biomass 

was dried at 60°C in a humidity-controlled oven 

until a constant weight was achieved. The dry 

weight was calculated and expressed as mg L⁻¹ 

[13]. 

To evaluate the biochemical composition of 

the microalgae, carbohydrate, lipid, and protein 

contents were analyzed using standard 

biochemical assays. Carbohydrate content was 

quantified using the phenol-sulfuric acid method 

[14], a widely used colorimetric assay that 

detects sugar derivatives based on their reaction 

with concentrated sulfuric acid and phenol. 

Lipid extraction was performed following the 

Bligh and Dyer method [15], which utilizes a 

chloroform-methanol-water mixture to 

effectively isolate total lipid content from 

microalgal cells. Protein concentration was 

determined using the Lowry method [16], a 

sensitive assay based on protein-copper 

interactions, with bovine serum albumin (BSA) 

used as a standard for calibration. 

Flocculation Efficiency 

Flocculation experiments were conducted in 

150 mL sample cups containing 100 mL of 

microalgal culture. During the flocculation 

experimental runs, cultures with different 

flocculation parameters were continuously 

stirred using rpm-controlled motorized rods for 

15 minutes at 100 rpm to promote interaction 
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homogeneous mixing, followed by a settling 

period of 30 minutes under static conditions. 

The supernatant was carefully withdrawn, and 

flocculation efficiency (FE) was assessed by 

measuring the reduction in OD at 680 nm then 

calculated according to the following equation  

𝐹𝐸 (%) =
𝑎0 − 𝑎𝑡

𝑎0
× 100 

where 𝑎0 indicates the Initial absorbance 

prior to sedimentation and absorbance after 

sedimentation time was denoted by 𝑎𝑡. 

A factor-by-factor approach was employed to 

determine the optimal range of key 

physicochemical parameters influencing 

flocculation, including flocculant concentration, 

pH, and salinity. The tested range for flocculant 

concentration (FeCl₃) was from 10 to 100 mg 

L⁻¹, pH was from 3 to 12 and salinity was from 

5 to 50 ppt NaCl. 

Response Surface Model Optimization with 

Central Composite Design 

The optimal parameters determined from the 

factor-by-factor analysis were subsequently 

used to construct the experimental matrix for the 

Central Composite Design in the Response 

Surface Methodology model. The experimental 

CCD matrix used in the optimization process is 

presented in Table (1).  

The CCD experimental design consisted of 

20 experimental runs, including factorial points, 

axial points, and center points, to assess both 

linear and quadratic effects of the independent 

variables. The mathematical model used to 

describe the flocculation efficiency (Y) as a 

function of the independent variables was 

expressed as follows [17, 18]: 

Y =  𝛽0 +  ∑ 𝛽𝑖

𝑘

𝑖=1

𝑋𝑖  +  ∑ 𝛽𝑖𝑖

𝑘

𝑖=1

𝑋𝐼
2 + ∑ 𝛽𝑖𝑗  𝑋𝑖  𝑋𝑗

𝑖<𝑗

+ 𝜀 

Where the response variable (Y) represents 

the dependent variable being studied, while 𝛽0 

is the intercept of the model. The coefficients of 

the linear terms are denoted as 𝛽𝑖, whereas 𝛽𝑖𝑖 

represents the coefficients of quadratic terms. 

Interaction effects between independent 

variables are captured by 𝛽𝑖𝑗, with  𝑋𝑖 and  𝑋𝑖 

representing the independent variables in the 

model. Lastly, 𝜀 accounts for the random error. 

Statistical analysis was performed to generate 

response surface plots, which visually 

represented the influence of each factor on 

flocculation performance. Following the 

identification of optimal conditions, 

confirmatory experiments were conducted to 

validate the accuracy of the predictive model. 

Flocculation efficiency was quantified by 

measuring the reduction in OD at 680 nm before 

and after sedimentation, providing a direct 

assessment of cell removal efficiency. 

Statistical Analysis 

Experimental data were analyzed and 

visualized using JMP 17.2 statistical software 

[19]. Student’s T-test was conducted to 

determine significant differences between paired 

groups. To optimize flocculation efficiency and 

explore the interactions between variables, a 

Response Surface Methodology (RSM) 

approach was employed. The RSM analysis 

included effect estimation, ANOVA to evaluate 

model significance, and a prediction profiler to 

visualize and identify optimal parameter 

settings. A 95% confidence interval was applied 

to all experimental analyses. However, for the 

RSM model, a 90% confidence level was used 

to account for the method’s sensitivity, ensuring 

robust and reliable predictions. 

Table 1: Coded and actual level values of the 

experimental variables used for the CCD matrix. 

Factor Name 
Chlorella sp. Monoraphidium sp. 

-1 0 1 -1 0 1 

X₁ 
Flocculant 

(mg/L) 
20 40 60 40 60 80 

X₂ pH 4 6 8 3 5 7 

X₃ Salinity (ppt) 15 25 35 0 10 20 

 

Results and Discussion 

Growth Kinetics and Evaluation 

The optical density (OD) measurements at 

680 nm for Chlorella sp. and Monoraphidium 

sp. demonstrated a typical sigmoidal growth 

curve (shown in Figure 1). For Chlorella sp., 

OD increased steadily until day 9 (1.742), after 

which the growth rate plateaued, indicating the 

onset of the stationary phase. Similarly, 

Monoraphidium sp. exhibited maximum OD 

around day 11 (1.398). These results suggest 

that the optimum harvesting time for Chlorella 

sp. is between days 8 and 9, whereas 

Monoraphidium sp. reaches its peak biomass 

around days 10 to 11. 
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The specific growth rate (μ) values illustrated 

in Figure (2) further support these findings, with 

Chlorella sp. exhibiting a higher growth rate 

(0.321 day⁻¹) compared to Monoraphidium sp. 

(0.228 day⁻¹). The higher growth rate of 

Chlorella sp. may be attributed to its 

adaptability to the culture conditions and faster 

nutrient uptake efficiency [20]. 

 
Figure 1: Optical density (680 nm) progression 

of Chlorella sp. and Monoraphidium sp. over 

time. 

The dry biomass results in Figure (2) 

revealed that Monoraphidium sp. produced a 

significantly higher biomass yield (678.00 mg 

L⁻¹) compared to Chlorella sp. (439.33 mg L⁻¹). 

This difference could be due to variations in 

cellular morphology and metabolic pathways 

that influence biomass accumulation [20]. 

 
Figure 2: Specific growth rate and Dry biomass 

of Chlorella sp. and Monoraphidium sp. 

In terms of biochemical composition (Figure 

3), Chlorella sp. exhibited a notably higher 

protein content of 61.12 % compared to 22.79 

% in Monoraphidium, while Monoraphidium sp. 

accumulated higher lipid (39.09 %) and 

carbohydrate (30.66 %) fractions which are 

higher than those in Chlorella sp. (12.21 % and 

15.93 %, respectively). The superior protein 

content in Chlorella sp. makes it a promising 

candidate for applications in protein-rich feed 

and nutritional supplements, whereas 

Monoraphidium sp. appears more suitable for 

biofuel production due to its enhanced lipid 

accumulation [21, 22]. 

 
Figure 3: Comparative analysis of cellular 

composition (% of carbohydrates, lipids, and 

proteins) in Chlorella sp. and Monoraphidium 

sp. 

Flocculation Efficiency 

Figure (4) demonstrates how the flocculation 

efficiency (FE%) of Chlorella sp. and 

Monoraphidium sp. was analyzed across three 

parameters, i.e. flocculant concentration, pH, 

and salinity (Figure 4A, 4B and 4C, 

respectively).  

 

Figure 4: Flocculation efficiency trends for A) 

flocculant concentration, B) pH, and C) salinity. 
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For flocculant concentration, both species 

exhibited an increasing trend in FE up to an 

optimal point, beyond which efficiency 

declined. For Chlorella sp., the highest FE 

(82.78%) was observed at 40 mg L⁻¹, whereas 

Monoraphidium sp. peaked at 60 mg L⁻¹ 

(77.58%). The decline in FE at higher 

concentrations may be attributed to charge 

neutralization saturation leading to particle 

restabilization. [23, 24]. 

Similarly, pH variation significantly 

influenced FE, with Chlorella sp. achieving the 

highest flocculation at pH 6 (86.2%) and 

Monoraphidium sp. at pH 5 (82.6%). Deviations 

from these optimal pH values resulted in 

decreased FE, likely due to changes in the 

surface charge of microalgal cells affecting 

coagulation efficiency [25]. Salinity also played 

a crucial role, with Chlorella sp. achieving 

maximum FE (96.24%) at 25 ppt and 

Monoraphidium sp. (87.32%) at 10 ppt. 

However, a decline was observed at higher 

salinity levels, suggesting that excessive ionic 

strength may hinder effective cell aggregation 

[26]. 

Response Surface Model Optimization 

The central composite design (CCD) model 

summary in Table (2) demonstrated strong 

predictive capabilities for Chlorella sp., with an 

R
2
 value of 99.07% and an adjusted R

2
 of 

98.03%, indicating a high correlation between 

experimental and predicted values. In contrast, 

Monoraphidium sp. exhibited a lower predictive 

power (R
2
 = 94.83%, adjusted R

2
 = 89.09%), 

with a relatively low predicted R
2
 value 

(47.22%), suggesting some model limitations in 

accurately predicting experimental outcomes. 

The interactions between flocculant 

concentration, pH, and salinity in the RSM 

model presented in Figure (5) and Table (3) 

highlight the complex dynamics governing the 

flocculation process. The significant quadratic 

effects of each parameter (pH*pH, 

salinity*salinity, and flocculant*flocculant) 

observed in both Chlorella sp. and 

Monoraphidium sp. indicate a nonlinear 

relationship, where increasing beyond a certain 

optimal level results in diminished efficiency . 

For Chlorella sp., pH had the most substantial 

effect (F = 102.98, p < 0.001), suggesting its 

critical role in altering the surface charge of 

microalgal cells, thereby affecting electrostatic 

interactions with the flocculants [27, 28]. 

Table 2: CCD model predictability and 

validation summary for Chlorella sp. and 

Monoraphidium sp. 

Microalgae S R2 R2 (adj) R2 (pred) 

Chlorella sp. 0.61 99.07% 98.03% 92.13% 

Monoraphidium sp. 1.74 94.83% 89.09% 47.22% 

 

 In contrast, flocculant concentration was the 

dominant factor for Monoraphidium sp. (F = 

48.26, p < 0.001), indicating that its aggregation 

is more dependent on flocculant-driven charge 

neutralization and bridging mechanisms. The 

interaction between flocculant and pH, while 

not statistically significant for either species (p 

> 0.05), suggests that specific pH conditions 

may enhance or suppress the effectiveness of 

particular flocculants due to changes in 

solubility and aggregation behavior. However, 

the interaction between flocculant and salinity 

was significant for Chlorella sp. (F = 15.88, p = 

0.003), indicating that increasing salinity 

initially promotes flocculation, likely by 

reducing electrostatic repulsion, but excessive 

levels may disrupt the process by destabilizing  

cell aggregation [26, 29]. The lack of strong 

two-way interactions for Monoraphidium sp. (p 

> 0.05) suggests that its flocculation response is 

more independently influenced by individual 

factors rather than synergistic effects. The 

optimal conditions predicted by the RSM model 

-flocculant 49.4 mg L⁻¹, pH 5.6, and salinity 

18.2 ppt for Chlorella sp., and flocculant 66.1 

mg L⁻¹, pH 5.6, and salinity 11.5 ppt for 

Monoraphidium sp.- aligned well with the 

actual validated responses (93.6% and 89.2% 

efficiency, respectively), confirming the model’s 

predictive reliability. 

The regression equations demonstrate these 

interactions and offer insights into the observed 

trends as shown in the following second-order 

polynomial equations: 

 𝐹𝐸𝐶.𝑠𝑝.(%) = 26.90 + 0.439𝑋1 + 16.66𝑋2 + 0.893𝑋3 − 0.00537𝑋1
2 − 1.356𝑋2

2 − 0.03673𝑋3
2

− 0.0211𝑋1 ∗ 𝑋2 + 0.01152𝑋1 ∗ 𝑋3 − 0.0225𝑋2 ∗ 𝑋3 
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𝐹𝐸𝑀.𝑠𝑝.(%) = −62.0 + 3.091𝑋1 + 15.78𝑋2 + 1.088𝑋3 − 0.02421𝑋1
2 − 1.518𝑋2

2 − 0.0595𝑋3
2

+ 0.0143𝑋1 ∗ 𝑋2 + 0.00258𝑋1 ∗ 𝑋3 + 0.0195𝑋2 ∗ 𝑋3

 
Figure 5: Response surface plots showing the interactive effects of flocculant concentration, pH, 

and salinity on flocculation efficiency for A) Chlorella sp. and B) Monoraphidium sp. 

Table 3: Interaction effects of flocculant, pH, and salinity based on ANOVA results. 

Source 
DF Chlorella sp. Monoraphidium sp. 

 
Adj SS a Adj MS b F-Value c P-Value d Adj SS Adj MS F-Value P-Value 

Model 10 358.954 35.8954 95.49 < 0.001* 502.74 50.273 16.52 < 0.001* 

Blocks 1 2.44 2.4398 6.49 0.311* 2.89 2.89 0.95 0.355 

Linear 3 38.829 12.9429 34.43 < 0.001* 155.57 51.855 17.04 < 0.001* 

Flocculant (X₁) 1 3.452 3.4523 9.18 0.014* 146.86 146.86 48.26 < 0.001* 

pH (X₂) 1 38.711 38.7111 102.98 < 0.001* 44.156 44.156 14.51 0.004* 

Salinity (X₃) 1 3.16 3.1596 8.41 0.018* 7.444 7.444 2.45 0.152 

Square 3 79.241 26.4136 70.27 < 0.001* 273.17 91.056 29.92 < 0.001* 

X₁*X₁ 1 8.572 8.5725 22.81 0.001* 174.23 174.23 57.25 < 0.001* 

X₂*X₂ 1 54.626 54.626 145.32 < 0.001* 68.444 68.444 22.49 0.001* 

X₃*X₃ 1 25.061 25.061 66.67 < 0.001* 65.655 65.655 21.57 0.001* 

2-Way Interaction 3 6.996 2.3321 6.2 0.014* 0.837 0.279 0.09 0.963 

X₁*X₂ 1 0.8 0.8001 2.13 0.179* 0.366 0.366 0.12 0.737 

X₁*X₃ 1 5.969 5.9685 15.88 0.003* 0.3 0.3 0.1 0.761 

X₂*X₃ 1 0.228 0.2278 0.61 0.456 0.171 0.171 0.06 0.818 

Error 9 3.383 0.3759     27.388 3.043     

Lack-of-Fit 5 3.373 0.6747 275.37 < 0.001* 27.378 5.476 2105.98 < 0.001* 

Pure Error 4 0.01 0.0025     0.01 0.003     

Total 19 362.337      530.12       
 

a
Adjusted sum of squares,  

b
 Adjusted mean squares 

c
 Fishers’s exact test statistic value 

d
 Probability of significance against the null hypothesis 

* Significant at 90% level of confidence (P < 0.1) 

Table 4: Comparison of predicted and actual validated flocculation efficiency values for optimized 

conditions. 

Microalgae 
Setting Predicted Response Actual Response 

Flocculant pH Salinity Efficiency (%) Efficiency (%) 

Chlorella sp. 49.4 5.6 18.2 92.5 93.6 

Monoraphidium sp. 66.1 5.6 11.5 90.4 89.2 
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The optimized CCD settings were 

experimentally validated (Table 4), 

demonstrating a strong agreement between 

predicted and actual flocculation efficiencies. 

For Chlorella sp., the predicted FE (92.5%) 

closely matched the actual response (93.6%). 

Similarly, Monoraphidium sp. exhibited a minor 

deviation between predicted (90.4%) and actual 

(89.2%) FE values, confirming the reliability of 

the model in optimizing flocculation conditions. 

Conclusion 

This study highlights the distinct growth, 

biochemical composition, and flocculation 

efficiency of Chlorella sp. and Monoraphidium 

sp., with Response Surface Methodology (RSM) 

playing a key role in optimizing biomass 

recovery. Chlorella sp. exhibited superior 

flocculation efficiency and high protein content, 

making it well-suited for large-scale harvesting, 

while Monoraphidium sp. demonstrated higher 

lipid accumulation and biomass yield, 

supporting its potential for biofuel production. 

The RSM-based optimization significantly 

improved flocculation performance, particularly 

for Chlorella sp., enhancing the efficiency of 

biomass recovery. These findings underscore the 

broader applicability of microalgal flocculation 

in sustainable biotechnology, whether for 

biomass harvesting or bioremediation in 

wastewater treatment. 
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