

MANSOURA JOURNAL OF BIOLOGY

Official Journal of Faculty of Science, Mansoura University, Egypt

ISSN: 2974-492X

E-mail: scimag@mans.edu.eg

Herbal antibiofilm effects against phenotypically and genotypically detected clinical Methicillin-resistant staphylococcus aureus isolates

Nourallah E. Akl¹, Amira H. EL-Ashry², Gamal M. Abdel-Fattah¹

Department of Botany, Faculty of Science, Mansoura University, Egypt
 Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Egypt.

betweet. This study was conducted to det

Received: 25/10/2022 Accepted: 10/11/2022 **Abstract:** This study was conducted to detect the effect of some medicinal plant extracts on the biofilm formation of Methicillin-resistant *staphylococcus aureus* (MRSA) isolated from patients in Mansoura University Hospitals.

Results: Fifty samples (Blood, Wound swab, nasal swab and urine) from patients revealed the total number of isolates were methicillin-resistant *staphylococcus aureus* (MRSA). Molecular analysis revealed that mec Agene was detected in all isolates. then MRSA isolates were positive for biofilm genes specific (icaA and icaD). Among all herbal plant extracts, *Camellia sinensis* (green tea) extract was the greater inhibitor of the biofilm formation of MRSA isolates. In this connection, this effect showed the lysis of MRSA cell wall through Transmission Electron Microscope (TEM).

Conclusions: *Camellia sinensis* leaf extracts could be valuable in fighting evolving drug-resistance caused by MRSA.

keywords: Methicillin, Resistant, Phenotypic, Genotypic, Staphylococcus aureus.

1.Introduction

A significant problem in the fight against infectious diseases is the bacterial development of antibiotic resistance. The most commonly found multi-drug resistance bacteria, particularly through nosocomial infections are methicillin-resistant *staphylococcus aureus* (MRSA)[1].

MRSA is still a significant issue in infection control around the world. MRSA is a strain of *staphylococcus aureus* that is characterized by its resistance to methicillin. MRSA is a major threat to human health because it is resistant to β –lactams and variety of antibacterial agent including penicillin, oxacillin, amoxicillin, methicillin, cephalosporins and chloramphenicol [2,3].

MRSA can cause a variety of disease from crust and forgiving skin impurities to grim intrusive corruptions such as pneumonia, bacteremia, endocarditis and osteomyelitis [4].

MRSA contaminations are serious due to the occurrence of multi-drug resistance strains and also the existence of isolates that can form a resilient biofilm, which is considered an

important virulence factor, it is most frequently associated with the synthesis of polysaccharide intracellular adhesion (PLA) encoded by ica operon, This synthesis is mediated by fibronectin-binding protein sclumping factors and biofilm-binding proteins [5,6].

Substitute antimicrobial causes are wanted to be advanced and employed to control multidrug resilient bacteria. To answer this task, there have been increasing benefits to finding antimicrobial mixtures from therapeutic plant extracts as another method to discover new antimicrobial compounds. The antimicrobial doings of some herbal drugs against diverse pathogens [7,8].

Plant extracts have been used to reduce antibiotic use, prevent the worsening of antibiotic resistance and decrease MRSA biofilm formation which produces many biologically active substances, providing defense against environmental microbes [9].

These natural medicines are harmless, inexpensive and affordable. Herbal plants include scamellia sinensis (green tea),

cinnamomum zelyanicum (cinnamon) and Allium sativum (garlic) [10]. The aim of this study was planned to investigate the phenotypic and genotypic methods of MRSA isolates to detect the antibacterial activity of the herbal plant extracts against clinical isolates

2. Materials and methods

Bacterial strains

Fifty MRSA isolates were inaccessible from patients who admitted to different Mansoura university hospitals from august 2021 to December 2021. Samples were still by sterile cotton wipes and impassive to the microbiology and immunology Department for further studies.

Isolation and Identification of MRSA

1) Phenotypic identification:

All samples were injected into blood agar and mannitol salt agar dishes and then gestated at 37°C for 24 hrs. Identification of the isolated *S. aureus* colonies were done according to the typical bacteriological performance [11].

S. aureus isolated performed as yellow clusters on mannitol salt agar and produce β -haemolysis on blood agar. Under microscopic examination. S. aureus isolates appear as grampositive cocci (violet color) arranged in grapelike groups. In biological reaction. S. aureus isolates were coagulase and catalase tested positive [12].

All insulates recognized as *S. aureus* were added and divided for methicillin resistance by disc diffusion method using cefoxitin (Fox 30 μ g). The zones on inhibition \leq 25 were measured to be MRSA according to CLSI guidelines [13].

2) Genotypic identification:

The molecular characterization of MRSA depends on the detection of mecA gene. The presence of mecA gene was detected by polymerase chain reaction (PCR) using forward and reverse primer[14]as recorded in Table 1 The magnification database for mecA gene involved in opening denaturation was done at 94°C for 5 min followed by 10 cycles of denaturation 94°C for 45 sec, Annealing steps 65°C for 45 sec and an extension step 72°C for 1.5min followed by 25 cycles with final

extension step was done at 72°C for 10 min [15].

Table 1: Sequences of the primer sets designed in this study for the amplification of mecA gene.

Gene	Primer Sequence	size (bp)
mecAF:	5'TGGCTCAGGTAC	
mecAF:	TGCTATCCAC 3'	1080bp
mecAR:	3'AGTTCTGCAGTA	
mecak:	CCGGATTTGC 5'	

Detection of biofilm formation

1) Phenotypic detection:

Phenotypic biofilm formation of MRSA was detected by Congo red agar (CRA) way. MRSA insulates were cultured on brain heart infusion agar with 0.08 % congo red addition with 30 % sucrose. The strains were injected in streaks and incubated at 37°C for 24hrs. The Biofilm appeared as black colonies, while the non-biofilm appear as white or red colonies [16].

2) Genotypic detection:

The company of biofilm-linked genes icaA and icaD were examined by conformist PCR on the beforehand removed DNA of *s. aureus* isolates using specific primers for each [17]. The classification of textbooks for the tested genetic factor was listed in **Table 2**

Table 2: Sequences of the primer sets designed in this study for the amplification of icaA and icaD genes.

Gene	Primer Sequence	size(bp)
ica AF:	5ACACTTGCTGGC	
ica AF.	GCAGTCAA-3	198bp
ica AR:	5TCTGGAACCAAC	
ica AK:	ATCCAACA-3	
ica DF:	5ATGGTCAAGCCC	
ica Dr:	AGACAGAG-3	198 bp
ica DR:	5AGTATTTTCAAT	
ica DK:	GTTTAAAGC-3	

The amplification program for icaA and icaD genes consisted of initial denaturation done at 95°C for 5 min followed by 30 cycles of denaturation at 95°C for 45 sec, an annealing step at 60°C for 45 sec, an extension step at 72°C for 1 min with final extension step was done at 72°C for 7 min [18].

Antimicrobial susceptibility test

Detection of antimicrobial susceptibility in clinical isolates of MRSA was done by disk diffusion method according to the Clinical and Laboratory Standards Institute (CLSI)

guidelines [19]. The following antibiotic discs from MAST Categories Ltd., Merseyside, UK, were used: Penicillin (P, 10µg), Amikacin (AK, 30µg), Oxacillin (OX, 1µg), Azithromycin (AZM, 15µg), Cefoxitin (FOX, 30µg), Ofloxacin (OFX, 5µg), Ciprofloxacin (CIP, 5µg), Vancomycin (VA, 30µg), Amoxicillin (AM, 30µg) and Tetracycline (TE, 30µg). MRSA was a control strain used for all antibiotics discs.

Plant extracts preparation

The three herbal plants *camellia sinensis* (green tea), *cinnamomum zelyanicum* (cinnamon), and *Allium sativum* (garlic) were dried and pulverized into fine powder. The powdered material was stored in air-tight sterile containers and protected from sunlight until required according to Whatman, USA. and Handa *et al.*, [20].

Effect of medicinal plant extracts on biofilm formation of MRSA

- A) By using the agar well diffusion method the strains were inoculated by streaking the sterile cotton swab in three directions over the entire surface of the agar plates to obtain a uniform inoculum [21]. Then sterile cork borer was used to make wells of 6mm in diameter in an agar plate. 150µL of each plant extract was poured into each well using a sterile Pasteur pipette. Then plates were incubated at 37°C for 24hrs.
- B) By Micro-titration plate method according to the method of O.Toole[22].
- C) By Transmission Electron Microscope (TEM) technique according to the method of William and barry[23].

3.Results

Bacterial isolates

In this study, fifty clinical MRSA isolates were obtained from male and female patients admitted to different Mansoura university hospitals. Each sample was cultured on a specific medium. Results recorded in **Table** (3) shows that wound swab samples were the commonest samples giving positive MRSA growth while throat gave the lowest number of MRSA isolates.

Detection of Methicillin-resistant staphylococcus aureus (MRSA)

The discovery of MRSA was ended by using cefoxitin disc. The results showed that all isolated strains were cefoxitin-resistant. The mecA gene was noticed in all (100%) MRSA isolates shown in **figure** [1].

Detection of biofilm formation

All isolates were verified for their aptitude to form biofilm using the congo red agar method which optimistic result appears as black groups as shown in **figure [2]**. All isolates were verified for the company of biofilm-linked genes: icaA and icaD by straight PCR. The primers used in the experiment showed specificity with a single band as shown in **figure[3]**.

Table (3): Distribution of MRSA strains among different clinical samples.

Sample	Number of	Percentage
	MRSATotal = 50	(%)
Wound	26	52%
Blood	12	24%
Urine	5	10%
Sputum	3	6%
Nose	3	6%
Throat	1	2%
Total	50	100%

Among all clinical MRSA isolates, 22 isolates were from females (44%) and 28 isolates from males (56%) as shown in **Table (4)**

Table (4): Percentage of clinical samples collected from different genders.

		Ger				
Samples	Fei	male Ma		[ale	Total	
	No.	%	No. %		No.	%
Wound	11	22%	15	30%	26	52%
Blood	5	10%	7	14%	12	24%
Urine	3	6%	2	4%	5	10%
Sputum	1	2%	2	4%	3	6%
Nose	1	2%	2	4%	3	6%
Throat	1	2%	0	0%	1	2%
Total	22	44%	28	56%	40	100%

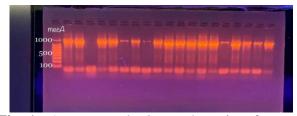


Fig 1: Agarose gel electrophoresis of mecA gene

Fig 2: A: Biofilm formation (Black colonies)& B: Non-biofilm formation (Red colonies)

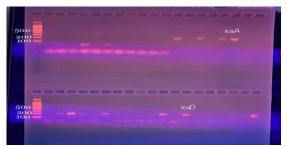
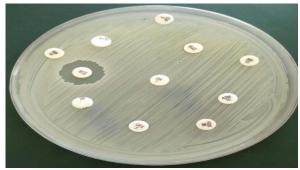
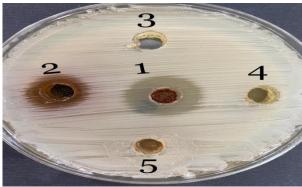




Fig 3: Agarose gel electrophoresis of icaA&icaD genes

Antimicrobial susceptibility

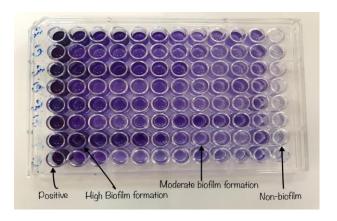
Fig 4: Resistance of 9 antibiotics as P, OX, FOX, AZM, CIP, TE, AM, OFX, AK. Sensitive to 1 antibiotic is VA.

Fig 5: activity of different herbal plant extracts against MRSA isolates. 1: Green tea, 2: Cinnamon, 3: Garlic, 4: Ginger, 5: Demso act as a control

Comparison between the activity of 5 antibiotics and different 3 plant extracts against clinical MRSA isolates

It is interesting to notice that the crude extracts of tested herbal plants showed good activity against clinical MRSA isolates while the antibacterial treatment had limited effect as shown in Table (6).

Table (5) recorded the data of antimicrobial susceptibility of 50 MRSAisolates against 10 agents. **Figures [4&5]** shows the difference between the effects of the antibacterial and the medicinal plant on the MRSA isolates. It is obvious that herbal plants, especially Green tea extract more effective than the antibacterial.


Table (5)Susceptibility of MRSA isolates to 10 antibiotics

Antimicrobial agents	Potency	MRSA	
(Antibiotics)	(µg/disc)	inducibility	
Pencillin(10µg)	P	R	
Tetracyclin(30µg)	TE	R	
Vancomycin(30µg)	VA	S	
Oxacillin(1µg)	O	R	
Azithromycin(15µg)	AZM	R	
Cefoxitin(30µg)	FOX	R	
Ofloxacin(5µg)	OFX	R	
Amoxixillin(30µg)	AM	R	
Ciprofloxacin(5µg)	CIP	R	
Amikacin(30µg)	AK	R	

R: resistant , S: sensitive

Effect of medicinal plant extracts on biofilm formation of MRSA

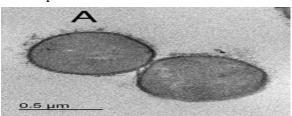
The most effective herbal plant extract were green tea and cinnamon extracts against MRSA isolate values of MIC were determined by using the microtitration plate method shown in Figure [6] and Table (7) & (8). MRSA was resistant to cinnamon extract, so used a higher concentration of cinnamon extract than green tea extract to inhibit the biofilm formation of MRSA.

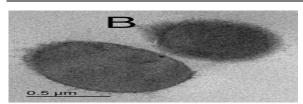
Fig 6: indicated that inhibition of biofilm formation of MRSA with the increase of plant extracts concentration and vice versa.

The results in **Table** (6) Comparison between the activity of TE,VA,DA,AK,E antibiotics and different plant extracts against clinical MRSA isolates.

MRSA	Diameter of inhibition zone (mm)								
isolates	TE30 μg	VA30 µg	DA2μg	AK30μg	E15 μg	Green tea	Garlic	Cinnamon	
No.	S15≥	S ≥12	S ≥14	S ≥18	S≥23				
1	0	0	0	0	0	28	0	14	
2	0	0	0	0	0	10	0	8	
3	0	17	0	6	0	14	0	0	
4	0	0	0	0	0	21	0	10	
5	0	10	0	0	2	16	0	20	
6	0	14	0	0	0	20	0	13	
7	0	20	3	0	0	22	0	12	
8	0	0	0	0	0	11	0	0	
9	0	0	0	0	0	13	0	6	
10	0	9	0	0	0	18	0	22	
11	0	18	7	0	0	25	0	17	
12	0	5	0	0	0	9	0	3	
13	0	0	0	0	0	21	0	11	
14	0	0	0	0	0	21	0	25	
15	0	12	0	9	0	27	0	16	
16	0	0	0	0	0	15	0	16	
17	0	0	0	0	0	10	0	5	
18	0	7	0	0	0	16	0	20	
19	0	0	0	0	0	23	0	13	
20	0	0	0	0	0	19	0	24	

TE: Tetracyclin , VA: Vancomycin , DA: Clindomycin , AK: Amoxicillin , E: Erythromycin


Table (7): Inhibition of biofilm formation by MRSA under the action of Green tea &cinnamon extracts


Serial	Optical density readings of MRS at 450-550nm MRSA isolates							
Conc. of								
green tea& cinnamon extracts (mg/ml)	3		15		22		24	
	Green tea	cinnamon	Green tea	cinnamon	Green tea	cinnamon	Green tea	cinnamon
Negative	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
control								
50	0.11	0.15	0.1	0.12	0.12	0.23	0.11	0.18
25	0.15	0.18	0.13	0.14	0.16	0.29	0.11	0.23
12.5	0.19	0.19	0.17	0.17	0.19	0.38	0.16	0.27
6.25	0.22	0.27	0.17	0.20	0.22	0.40	0.18	0.33
3.1	0.35	0.42	0.23	0.23	0.27	0.44	0.20	0.45
1.56	0.41	0.55	0.28	0.37	0.33	0.59	0.25	0.54
0.78	0.49	0.69	0.30	0.44	0.33	0.66	0.36	0.56
0.37	0.58	0.73	0.45	0.63	0.47	0.80	0.47	0.73
0.2	0.67	0.84	0.59	0.96	0.55	0.99	0.61	0.89
Positive	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05
MRSA								

Electron microscopic examination of plantsusceptible MRSA isolates

The most effective medicinal plant extract against MRSA isolates was green tea. The isolates were examined under the transport electron microscope (TEM) before and after treatment with plant extract. Result in **figure 7**

(A&B) cell deformation, membrane and cell wall rupture of isolate

Fig 7 A: Before treatment & B: After treatment by green tea extractes

Discussion

MRSA, also known as methicillin-resistant *staphylococcus aureus*, is the main basis of nosocomial infections all over the world. It reasons minor to simple taints which are occasionally hard to luxury due to its fight against multiple antibiotics and carriage of manifold virulence features [24].

Ofloxacin and Ciprofloxacinare endorsed for serious infections associated with *staphylococci*, But Vancomycinstill remains the drug of choice for most MRSA-related illnesses [25].

Additionally, the capacity of MRSA strains to form biofilms and their frequently present multidrug resistance profile increase, which cause resistance to many antimicrobial agents, so searching for natural plants other to commonly used antimicrobial agent is increasing [26].

In the current study, we inspected the result of herbal plant of three plant species (Green tea-Cinnamon and Garlic) on MRSA isolates. Discovery new antibacterial drugs is very vital, the gotten results have shown that Green tea extract had an inhibitory and bacteriocidal effect on isolates at low concentrations 0.2 mg/ml of the studied extracts [27].

But the cinnamon extract were affected on growth of MRSA but at a high concentration of 25 mg/ml , so MRSA more resistant to cinnamon extract than green tea extract to inhibit biofilm formation of MRSA [28].

The possessions of green tea abstract which inhibit MRSA growth are largely linked to their polyphenolic components counting epicatechin, epicatechingallate, epigallocatechin and epigallocatechingallate in contradiction of MRSA isolates [29].

Green tea was also informed to have a synergistic effect with β –lactam antibiotics alongside MRSA, it was also testified that the main component of tea polyphenols,

Epigallocatechingallate (EPGG) can reverse methicillin-resistance of MRSA by inhibiting the synthesis of PBP2, which also increase non β -lactam cell wall biosynthesis inhibitors [30, 31].

Conclusion

Based on the result obtained here, green tea could be used as a substitute treatment to treat infectious illnesses produced by multi-drug-resistant MRSA.

4.References

- Abbasi-Montazeri KhosraviAD, 1. Ε, Feizabadi MM, etal.,(2013). The prevalence of methicillin resistant Staphylococcus aureus (MRSA) isolates with high-level mupirocin resistance from patients and personnel in a burn center. Burns. 39: 650–54.
- 2. Kollef MH, Micek ST,(2006). Methicillinresistant Staphylococcus aureus: a new community-acquired pathogen? Curr Opin Infect Dis; **19**: 161-168.
- 3. Shibata, H.; Kondo, K.; Katsuyama, R.; Kawazoe, K.; Sato, Y.; *et al.*, (2005): Alkyl gallates, intensifiers of β –lactam susceptibility in methicillin-resistant Staphylococcus aureus. Animic. Agents Chemo., **49(2):** 549-555.
- 4. Saidel-Odes L, Riesenberg K, Schlaeffer F, Borer A, (2009). Epidemiological and clinical characteristics of methicillinsensitive Staphylococcus aureus (MSSA) bacteriuria. *Journal of Infection.* **58**(2):119-122.
- 5. Mitushata R, Monden K, Ando E ,(2004).Biofilm formation among methicillin-resistant staphylococcus aureus isolates from patients. Acta Med Okayama:86432-14.
- 6. Chen Q, Xie S, Lou X, Cheng S, Liu X, Zheng W, *et al.*, (2020).Biofilm formation and prevalence of adhesion genes among Staphylococcus aureus isolates from different food sources. Microbiology; **9(1)**: 00946.
- 7. Hasan R, Acharjee M, Noor R, (2016). Prevalence of vancomycin resistant Staphylococcus aureus (VRSA) in methicillin resistant S. aureus (MRSA) strains isolated from burn wound

- *infections. Tzu Chi Medical Journal* (2016); **28(2):** 49-53.
- 8. Lakshmi AV, Harasreeramulu S, Satyanarayana Raju DVV, (2013). Assessment of antibacterial potential of selected medicinal plants and their interactions with antibiotics on MRSA in the health care workers of Visakhapatnam hospitals. *Journal of Pharmaceutical Research.* **6**: 589-592.
- 9. Gitau W, Masika M, Musyoki M, Museve B, Mutwiri T, (2018). Antimicrobial susceptibility pattern of Staphylococcus aureus isolates from clinical specimens at Kenyatta National Hospital. BMC research notes; 11(1): 226.
- 10. Cho YS, Schiller NL, Oh KH,(2008). Antibacterial effects of green tea polyphenols on clinical isolates of methicillin-resistant Staphylococcus aureus. Curr Microbiol; 57: 542-546.
- 11. Cheesbrough M, (2006). District laboratory practice in tropical countries, part 2. Cambridge university press.
- 12. Karmakar A, Dua P, Ghosh C, (2016). "Biochemical and Molecular Analysis of Staphylococcus aureus Clinical Isolates from Hospitalized Patients", Canadian Journal of Infectious Diseases and Medical Microbiology: 10 (7): 9041636.
- 13. Anand, K. B., Agrawal, P., Kumar, S., & Kapila, K. (2009). Comparison of cefoxitin disc diffusion test, oxacillin screen agar, and PCR for mecA gene for detection of MRSA. Indian *Journal of Medical Microbiology*, **27(1)**, 27-29.
- 14. Jonas D, Speck M, Daschner FD, Grundmann H, (2002). Rapid PCR-based identification of methicillin-resistant Staphylococcus aureus from screening swabs. *J Clin Microbiol*; **40**(5):1821-3.
- 15. Cekovska Z, Panovski N, (2005). Methicillin-resistant Staphylococcus aureus: comparison of susceptibility test methods with *mec*A gene analysis for determining oxacillin (methicillin) resistance in our clinicalisolates. Bratisl. Lek. Listy, **106**:163–7.
- 16. Cha J, Yoo J, Yoo J, (2013). Investigation of biofilm formation and its association with the molecular and clinical characteristics of methicillin-resistant

- Staphylococcus aureus. Osong Public Health Res Perspect; **4**(**5**):225–32.
- 17. Ibrahim M, Shettima A, Ngoshe I, Ibn Abbas M, Bello H,(2020). Phenotypic Determination of Biofilm Formation and Acquired Resistance Profile of clinically Derived Bacterial Isolates. *Eur J Biol Biotech*; **9(23):**1-4.
- 18. Karki S, Sah A, Lamichhane J, Maharjan A, Sharma L, Rajbhandari R, *et al.*, (2019). Biofilm Formation and Detection of icaD Gene in Staphylococcus aureus Isolated from Clinical Specimens. *The Open Microbiology Journal*; **13(1)**: 12-17.
- 19. Nasr RA, Abu Shady HM, Hussein HS, (2012). Biofilm formation and presence of icaAD gene in clinical isolates of staphylococci. Egyptian *journal of medical human genetics*; **13(3)**: 269-274.
- CLSI, (2019). Performance Standards for Antimicrobial Susceptibility Testing. 29th ed. Wayne PA, USA: CLSI Supplement M100; Clinical and Laboratory Standards Institute.
- 21. Handa, S., Khanuja, S.P., Longo, G. and Rakesh, D.D, (2008)Extraction Technologies for Medicinal and Aromatic Plants. United **Nations** Industrial Development Organization and the International Centre for Science and High Technology, 260 p.
- 22. Hassan W., Zainab K. S. N., Noreen H., Riaz A., Zaman B, (2016). Antimicrobial activity of cinnamomum tamala leaves. *Journal of Nutritional Disorders & Therapy*;**6(2)** doi: 10.4172/2161-0509.1000190.
- 23. O'Toole G,A., (2011). Microtiter dish biofilm formation *assay.J. Vis. Exp*,. **47.**DOI: 10.3791/2437.
- 24. William,D.B., Barry.C.B., (2009). Transimission Electron Microscope [electronic resource]: A Text book for materials scirnce (2nd ed.): Boston, AM; springer US.
- 25. Boucher, H., and Ralph Corey, G. (2008). Epidemology of methicillin-resistant staphylococcus aureus. Clinical Infectious Diseases. 46(5). PPS344-S349.
- 26. Chamber, F. (2001). Methicillin-resistant staphylococcus aureus: molecular and biochemicl basis and clinical implications.

- Clinical Microbiology Reviews.**10.(4).** PP781-791.
- 27. Saeed A, Ahsan F, Nawaz M, Iqbal K, Rehman KU, Ijaz T,(2020). Incidence of vancomycin resistant phenotype of the methicillin resistant Staphylococcus aureus isolated from a tertiary care hospital in Lahore. Antibiotics; **9(1)**: 3.
- 28. Jazani, NH., Shahabi S, Abdi-Ali A. (2007). Antibacterial effects of water-soluble green tea extracts on multi-antibiotics resistant isolate of MRSA. *Pak J Biol Sci*; **10(9)**: 1544-1546.
- 29. Janecki A, Kolodziej H., (2010). Adhesive activities of flavanols and proanthocyanidins in the interaction pf group A- staphylococci. Molecules; **15**: 7139-7152.

- 30. Blanco AR, Sudano-Roccaro A, Spoto GC, Nostro A, Rusciano D,(2005). Epigallocatechin gallate inhibits biofilm formation by ocular staphylococcal isolates. Antimicrob Agents Chemother: 49: 4339-4343.
- 31. Sharma A, Gupta S, Sarethy IP, Dang S, Gabrani R,(2012). Green tea extract: Possible mechanism and antibacterial activity on skin pathogens. Food Chem; 135: 672-675.
- 32. Hamilton-Miller JMT, Shah S,(2002). Activity of the component epicatechingallate and analogues against methicillinresistant *Staphylococcus aureus. J Antimicrob Chemother*; **46**: 847-863.