

MANSOURA JOURNAL OF BIOLOGY

Official Journal of Faculty of Science, Mansoura University, Egypt

E-mail: scimag@mans.edu.eg ISSN: 2974-492X

Assessment of Some Physico-chemical Parameters and Heavy Metals Level of an Ammonium-N Rich Industrial Effluent

Doaa M. Mohammad ¹; Dina A. Refaay ¹; Mohammad I. Abdel-Hamid ¹; Sami. A. Shabaan ¹

Botany Department, Faculty of Science, Mansoura university, Egypt.

Received:6/3/2021

Accepted:24/4/202

Abstract: Industrial effluents are laden with high concentrations of ammonia-N and heavy metals, considered as an urgent problem in developing populated countries due to their difficulty of safe disposal. The objective of this investigation was to evaluate the seasonal variation in water quality of a wastewater receiving drain from Eldelta for fertilizers and chemical industries (EFCI) company using some physico-chemical parameters between Spring 2018-Winter 2019. The parameters included water temperature, pH, total dissolved salts(TDS), electric conductivity(EC) biological oxygen demand(BOD), chemical oxygen demand(COD), dissolved oxygen(DO), total alkalinity, NO2-N, NO3-N, NH4-N, dissolved reactive phosphorus(DRP), total dissolved phosphorus (TDP), chlorides and heavy metals (iron, zinc, copper, lead, nickel, cadmium and manganese). The results shown significant ($P \le 0.05$) increase in water pH (9.79± 0.01), NH4-N (185.76± 0.14 mg l-1), nitrate-N (1.95± 0.03 mg l-1), nitrite-N (2.93± 0.09 mg l-1), total alkalinity (1998.02± 0.03 mg CaCO3 l-1), dissolved oxygen (4.97±0.06 mg l-1), biological oxygen demand(18.05±0.02 mg l-1), chemical oxygen demand (18.9 \pm 0.09 mg 1-1), total dissolved salts(7.51 \pm 0.16 g 1-1), EC(12.79±0.26 ms cm-1) and copper (0.339±0.002 mg l-1) in the winter, while DRP(0.39 ± 0.003 mg l-1), TDP (0.66 ± 0.002 mg l-1) and chlorides (3591.07 ± 0.03 mg 1-1) in summer. Thus, the high concentrations of chemical parameters investigated especially NH4-N and copper indicates the toxic state of the effluent discharged from (EFCI) company in winter season.

keywords Physico-chemical properties, industrial effluent, Ammonia toxicity.

1.Introduction

Water is among the most constituents that provide the Earth with the capacity of supporting life. It is regarded as our lifeline, which is required for all living things in the world. Water is obtained from two principal natural sources: surface water such as freshwater, lakes, rivers, streams, and groundwater such as borehole water and well water [1]

With an ever-increasing population and industrialization, the world faces a global water quality crisis in surface water resources as there are small fractions of world freshwater available for direct human consumption and other living organisms' uses. The other fractions are being contaminated enormously due to the high pollution rates by one or more of domestic effluent, agricultural activities and industrial effluents [2]

Industrial wastewater contamination considered as being thieved issue in developing populated countries, particularly on natural water bodies that lie near to the industrial area resulting in various levels of pollutants that can be released directly into water through sewer line making such water resources unsuitable for drinking, irrigation, and aquatic life. The type of industrial pollutants varies depending on the type of industry, for example; the fertilizer generates massive industry amounts wastewater containing high quantities nitrogen-rich compounds, nitrate, and heavy metals discharging nitrogenous whereas. effluents into water bodies favors eutrophication and consequently hazards impact on aquatic life and human health [3].

Ammonia nitrogen is a common toxicant derived from industrial effluents that can exist in either ionized form (ammonium, NH₄⁺) or unionized one (ammonia, NH₃). Increasing pH

favors formation of the toxic ammonia (NH₃), while the decreasing favors NH₄⁺ formation [4-6]. In this regard, NH₃ is documented to be more toxic than NH₄⁺ as it can readily diffuse through the gill membranes of aquatic animals, causing growth inhibition, immune suppression as well as high mortality [7-9]. Moreover, the ammonium nitrogen assimilation process destroys the carbon and nitrogen balance in plants besides other autotrophic organisms[10].

In this concern, water quality assessment is an essential issue for estimating the toxicity of industrial wastewater on humans, animals and plants' life. Water quality is the physical state of water, including; temperature, concentrations of total suspended solids (TSS), colour, odor and turbidity besides chemical characteristics of water including; pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), nutrients (nitrate and phosphorus components), metals such as copper, zinc, cadmium, lead and mercury [11] in addition to biological quality assessment[12].

Based on this information, the present investigation aims to assess the degree of contamination of effluent from El-Delta for Fertilizers and Chemical Industries (EFCI) company based on physico-chemical properties and evaluate its toxicity using standard algal biotest.

2. Materials and methods

2.1 Study area

The wastewater which is receiving alkaline ammonia-rich industrial effluents from El-Delta for Fertilizers and Chemical Industries (EFCI) company which produces primarily nitrogenous fertilizers. The area is located about 2 Km north of Mansoura city (31° 04′ 20.1" N, 31° 23′ 57.5" E). The geographical location of this study area is shown in (Figure 1)

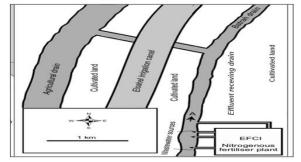


Fig .1.Schematic diagram showing the study

2.2 The sampling program and sample preparation

Liquid samples were seasonally collected during the period from mid-spring, 2018 to mid-winter, 2019. Sample collection, handling, and processing were conducted according to EPA (1985). Four liters of each sample were filtered through GF/C glass fiber filters upon arrival to the laboratory. The first one liter was disposed of, and the others were stored at 4 °C in the dark to be used for distinctive chemical analyses

2.3 Field observation

Water temperature was measured using, YSI model 33 S.C.T. meter, electrical conductivity (EC) was measured directly using YSI model 33 S.C.T. meter, total dissolved salts (TDS) were measured directly using CORNING (Cole-Parmer model Check-mate 90). Hydrogen ion concentration (pH) was directly measured using a HORIZON ECOLOGY CO. PH meter Model 5995.

2.4 Chemical analyses

Biological oxygen demands reactive silica, dissolved reactive phosphorus (DRP), chloride and total hardness, ammonia – N, total alkalinity as well as nitrate-N were estimated according to [13]. Also, nitrite – N was assessed following the method of [14, 15]. Total dissolved phosphorous (TDP), chemical demand (COD) were quantified oxygen according to [13] in addition to dissolved oxygen (DO), which was estimated by the modified method [16] as described by[17]. Heavy metals (iron, zinc, copper, lead, nickel, cadmium, and manganese) were analyzed following the direct aspiration into an airacetylene flame using atomic absorption spectrophotometer type B U C K Scientific **ABSORPTION ATOMIC** SPECTROPHOTOMETER model ACCUSYS 211.

2.5 Statistical analysis

Values of each measurement represent the mean of three replicates $\pm SD$.

3. Results and Discussion

3.1 Physical and chemical properties of the wastewater

3.1.1 Field observations

Field observations are listed in (Table 1) where water temperature exhibited a noticeable seasonal trend with the lowest value 17.97 °C recorded in winter and the highest 35.03 °C in summer with a mean annual value of (25.01±7.29 °C). The pH of water samples was almost alkaline with a mean annual value of (9.61 ± 0.05) , the highest value 9.79 was recorded in winter since, the lowest value 9.4 in summer. Electric conductivity (EC) showed a minimum value of 9.06 ms cm⁻¹ recorded in summer, whereas the maximum value of 12.79 ms cm⁻¹ was recorded in winter with a mean annual value of (10.84±1.61 ms cm⁻¹). Total dissolved salts (TDS) showed a minimum value of 5.87 g l⁻¹ in summer, and the maximum one 7.51 g l⁻¹ was measured in winter with a mean annual value of $(6.62\pm0.75 \text{ g l}^{-1})$.

3.1.2 Laboratory analyses

Dissolved oxygen (DO) exhibited a minimum value of 2.06 mg I^{-1} that was recorded in summer and a maximum value of 4.97 mg I^{-1} in winter, with a mean annual value of $(3.75\pm1.22~mg~I^{-1})$ (Table 1). Biological oxygen demand (BOD₅) values fluctuated between $14.89\pm0.02~mg~I^{-1}$ and $18.05\pm0.02~mg~I^{-1}$, with an annual mean value of $(16.27\pm1.37~mg~I^{-1})$. Its minimum value was recorded in summer and the maximum value in winter (Table 1). Chemical oxygen demand (COD) exhibited a minimum value of $15.02~mgI^{-1}$ was recorded in summer and a maximum value of $18.9~mg~I^{-1}$ in winter, with a mean annual value of $(16.69\pm1.7~mg~I^{-1})$ (Table 1).

Nitrite-N values ranged from 1.94 to 2.93 mg I^{-1} with a mean annual value of (2.53 ± 0.42) mg 1⁻¹), its minimum value was recorded in summer while the maximum value in winter. (Table 1). Nitrate-N concentrations ranged from 1.04 to 1.95 mg I^{-1} with a mean annual value of (1.6±0.39 mg l⁻¹), the minimum value was recorded in summer, while the maximum value in winter (Table 1). Ammonium-N accounted for the major proportion of total soluble inorganic nitrogen (TSIN) whereas, the concentrations ranged from 177.32 to 185.76 mg 1⁻¹, with a mean annual value of (182.07±3.6 mg 1⁻¹), its minimum value was recorded in summer and the maximum value in winter (Table 1).

Dissolved reactive phosphorus (DRP) exhibited a minimum value of 0.31 mg l⁻¹ was recorded in winter and the maximum value 0.39 mg l⁻¹ in summer, with an annual average of (0.34± 0.04 mg l⁻¹) (Table 1). While total dissolved phosphorus (TDP) concentration ranged from 0.511 and 0.66 mg l⁻¹. The minimum value was recorded in winter and autumn, whereas the maximum value in summer with a mean annual average of (0.58± 0.08 mg l⁻¹) (Table 1).

N:P weight ratio is an important ecological parameter governing nutrient limitations (P and N) in aquatic ecosystems. Values ranged from 171.7 to 232.4, with a mean annual value of 205.2. The highest ratio was recorded in winter, and the lowest ratio was recorded in summer (Table 1).

Reactive silica concentration varied from 0.08 to 0.13 mg l-1 with mean annual value of (0.01±0.02 mg l⁻¹). The minimum value was recorded in winter and the maximum value in summer (Table 1). Chlorides minimum value 3508.35 mg l⁻¹ was recorded in winter and the maximum value 3591.07 mg l⁻¹ in summer with a mean annual value of (3552.36±39.08 mg l⁻¹) (Table 1).

Total hardness values ranged from 98.05 to 101.05 mg CaCO3 I⁻¹ with a mean annual value of (99.79±1.5 mg CaCO3 I⁻¹), its minimum value was recorded in summer, but the maximum value in winter and autumn (Table 1). While the minimum value of total alkalinity 1948.05 mg CaCO3 I⁻¹ was recorded in summer, and the maximum value 1998.02 mg CaCO3g I⁻¹ in winter, with a mean of (1973.03±22.6 mg CaCO3 I⁻¹) (Table 1).

Regarding heavy metals, Iron concentration fluctuated between 0.06 to 0.149 mg l⁻¹ with a mean of (0.113±0.039 mgl⁻¹), its minimum value was recorded in summer and the maximum value in winter (Table 2). Zinc

concentrations ranged from 0.052 to 0.150 mg I^{-1} with a mean annual value of $(0.104\pm0.041~\text{mg}I^{-1})$, its minimum value was recorded in summer and the maximum value in winter (Table 2). The lowest value of copper, 0.243 mg I^{-1} was recorded in summer, while the highest value 0.339 mg I^{-1} in winter with a mean value of $(0.269\pm0.05~\text{mg}I^{-1})$ (Table 2). Lead concentration values ranged from 0.088 to

0.175 mg l⁻¹, with a mean annual value of (0.122±0.04 mgl⁻¹) its minimum value was recorded in summer and the maximum value in winter (Table 2). Nickel exhibited a minimum value 0.053 mg l⁻¹ was recorded in summer and the maximum value of 0.142 mg l⁻¹ in winter, with a mean value of (0.110±0.04 mgl⁻¹) (Table 2).Cadmium concentration values ranged from

0.031 to 0.065 mgl⁻¹, with a mean value of (0.047±0.02 mgl⁻¹), its minimum value was recorded in winter and the maximum value in summer (Table 2). Manganese showed the minimum value of 0.125 mg l⁻¹ was recorded in

winter and the maximum value of 0.222 mg I^{-1} in summer, with a mean value of $(0.181\pm0.04 \text{ mg}I^{-1})$ (Table 2).

Table 1. Summary statistics of seasonal variations of physical and chemical water parameters investigated at Eldelta for fertilizers and chemical industries (EFCI) company (Spring 2018 – Winter 2019)

Parameter	Unit	n ^a	Spring ^b	Summer b	Autumn ^b	Winter ^b	(Mean ± SD) c	Maxi.d	Min.d
pН	-	4	9.51±0.02	9.4 ± 0.03	9.73± 0.02	9.79± 0.01	9.61±0.05	9.79	9.4
Water temperature	0C	4	25.06±0.5	35.03 ± 0.06	21.97 ± 0.05	17.97 ± 0.06	25.01±7.29	35.03	17.97
Ammonium- N	mgl^1	4	181.76±03	177.32±0.03	183.42±0.03	185.76± 0.14	182.07±3.6	185.76	177.32
Nitrite-N	mg l ⁻¹	4	2.54±0.03	1.94 ± 0.02	2.69±0.02	2.93 ± 0.09	2.53 ±0.42	2.93	1.94
Nitrate-N	mg l ⁻¹	4	1.70±0.01	1.04 ± 0.03	1.71±0.03	1.95 ± 0.03	1.6 ±0.39	1.95	1.04
Dissolvedreac tive phosphorus	mg l ⁻¹	4	0.33±0.01	0.39±0.003	0.32±0.004	0.31± 0.009	0.34 ± 0.04	0.39	0 .31
Totaldissolve d phosphorus	mgl ⁻¹	4	0.62±0.05	0.66 ± 0.002	0.514±0.003	0.511±0 .02	0 .58± 0.08	0.66	0.511
N:P weight ratio		4	195.8	171.7	220.9	232.4	205.2±27.1	232.4	171.7
Reactive silica	mg 1 ⁻¹	4	0.12±0001	0.13 ± 0.002	0.09±0 .002	0.08±0 .006	0.01 ±0 .02	0.13	0.08
Total alkalinity	mgCaC O ₃ l ⁻¹	4	1961.01±002	1948.05±0.3	1985.03±0.03	1998.02±0.03	1973.03±22.6	1998.2	1945
Total hardness	mgCaC O ₃ l ⁻¹	4	99.02±0.3	98.05±0.02	101.047±0.05	101.05± 0.05	99.79±1.5	101.05	98.05
Chlorides	mg 1 ⁻¹	4	3578.79±0.04	3591.07±0.3	3531.22±0.03	3508.35± 0.02	3552.36±39.8	3591.7	3508.5
Dissolved oxygen	mg 1 ⁻¹	4	3.85±0.03	2.06± 0.02	4.11±0.02	4.97±0.06	3.75±1.22	4.97	2.06
Biologicaloxy gen demand	mgl ⁻¹	4	15.57±0.2	14.89± 0.02	16.55± 0.03	18.05± 0.02	16.27± 1.37	18.05	14.89
Chemicaloxy gen demand	mg 1 ⁻¹	4	15.97±0.6	15.02± 0.02	16.87± 0.04	18.9± 0.09	16.69±1.7	18.9	15.02
Total dissolved salts	g l ⁻¹	4	6.15±0.06	5.87± 0.08	6.93±0.06	7.51±0. 16	6.62±0.75	7.51	5.87
Conductivity	mscm ¹	4	10.13±0.22	9.06 ± 0.08	11.36 ±0.22	12.79±0.26	10.84±1.61	12.79	9.06

4. Discussion

Physico-chemical assessment of water quality of any aquatic ecosystem is a very effective issue in assessing water quality and status. Consequently, seasonal variations of some reliable and pertinent water quality physico-chemical parameters were investigated along the study area during one year, the idea was to assess the seasonal variation of water quality during one year. The parameters included water temperature, pH, conductivity, TDS, BOD, COD, DO, total hardness, total alkalinity, chloride, NO₂-N, NO₃-N, NH₄-N, DRP, TDP, reactive silica, and some heavy

metals were highly recommended as reliable and pertinent water quality measures[13, 18].

It is relevant to mention that the study area is a wastewater receiving drain that receives alkaline-ammonia-rich industrial effluents from El-Delta for fertilizers and chemical industries (EFCI) company that produces mainly nitrogenous fertilizers (Figure 1).

It's evident from data presented in Tables 1 and 2 that all effluent measurements are seasonality dependent. The results showed significant ($P \le 0.05$) increase in water pH, conductivity, TDS, BOD, COD, DO, total hardness, total alkalinity, NO₂-N, NO₃-N, NH₄-

N. Also all the heavy metals increased in winter except manganese and cadmium which showed the maximum value in summer. The present results are in harmony with those obtained by [19, 20]. It has been reported that variation in physical and chemical parameters of industrial effluent is dependent on seasonality and industrial activity that might be high in winter, besides Egypt climate, which characterized by low precipitation during months of winter, leads to more concentrated effluent [21-24].

Table 1 indicated that water of the investigated area is alkaline with a pH range of 9.4-9.79 and total alkalinity range of 1948.05-1998.02 mg CaCO₃ l⁻¹, which may be attributed to the high concentration of ammonium-N discharged by the industrial activities, which reflects the high degree of the effluent deterioration. In this concern, pH is considered one of the most important factors affecting water quality, solubility, and toxicity of various Moreover, the increase in water substances. pH decreases the availability of free CO₂ and consequently, the presence of photosynthetic organisms like algae is significantly reduced [25].

A marked increase in the ammonium-N concentration of the effluent (Table 1) was observed during the study period especially in winter, the values ranged from 177.32 to 185.76 mg l⁻¹. The high concentrations of NH₄-N investigated signified an inferior and toxic state of the area of study. Our results are in harmony with those obtained in the same study area [20]. It has been reported that free ammonia at high pH is very toxic to aquatic biota than when it's in the oxidized form, reflecting the grossly polluted conditions of this effluent [26].

As revealed from current results (Table 1), the dissolved oxygen concentration of the effluent was relatively low during the year of the study. In this regard, the insufficient dissolved oxygen in the water affecting the biochemical oxidation of ammonia to nitrate assumption and nitrite [27]. This accommodates with the results of the low concentrations of nitrate and nitrite during the study. On the other hand, the COD and BOD results were relatively high during the year of study. This may contribute to the increased

oxygen demand for the degradation of the organic wastes discharged, which led to depletion in dissolved oxygen.

As seen from results in Table 1, the concentration of the available phosphate-phosphorus (TDP) ranged between 0.511 and 0.66 mg 1⁻¹, the minimum values recorded during the winter. Phosphorus determination is essential in measuringwater quality because of being a key element in eutrophication problems. In this study, the mean value of the TDP of the effluent is relatively higher as TDP value of any stream should not exceed 50 μg 1⁻¹ [28].

Since nitrogen and phosphorus are the primary limiting factors in eutrophication problems [29], it seems critical to calculating the N:P weight ratio of the effluent according to its importance as an ecological parameter governing nutrient limitations (N and P) in aquatic ecosystems. The results listed in Table 1 indicated that the maximum N:P ratio 232.4 recoded in winter, which proved that the effluent is highly rich in inorganic nitrogen (NH₄-N) than phosphorus.

The effluent's heavy metal concentrations exhibited seasonal fluctuation (Table 2), demonstrating marked increase in Copper concentration in winter (0.339 mgl⁻¹), which indicates high involvement of Cu-rich materials in the industrial activities reflecting high contaminated study area. It has been widely known that heavy metals concentrations in surface water and sediments are influenced by source impute, the character of sediment, organic materials, temperature, and sometimes the mineral composition of underlying rock in the area where the surface water situated [30].

Conclusion

Finally, it can be concluded that values of physico-chemical parameters investigated from Eldelta for fertilizers and chemical industries (EFCI) company raw effluents are seasonality dependant. The higher concentrations NH₄-N and copper indicated the potential toxicity of wastewater

References

1. Lawson, E., (2011) Physico-chemical parameters and heavy metal contents of water from the mangrove swamps of

- Lagos Lagoon, Lagos, Nigeria. Advances in biological research, **5(1):** p. 8-21.
- 2. Raschid-Sally, L. and P. Jayakody, (2009) Drivers and characteristics of wastewater agriculture in developing countries: Results from a global assessment. Vol. 127: IWMI.
- 3 Osibanjo, O., A.P. Daso, and A.M. Gbadebo, (2011) The impact of industries on surface water quality of River Ona and River Alaro in Oluyole Industrial Estate, Ibadan, Nigeria. *African Journal of Biotechnology*, **10(4)**: p. 696-702.
- 4 Azov, Y. and J.C. Goldman, (1982) Free ammonia inhibition of algal photosynthesis in intensive cultures. Applied and environmental microbiology, **43(4):** p. 735-739.
- 5 Randall, D.J. and T. Tsui, (2002) Ammonia toxicity in fish. Marine pollution bulletin,. **45**(1-12): p. 17-23.
- 6 Wang, J., et al., (2019). Ammonium nitrogen tolerant Chlorella strain screening and its damaging effects on photosynthesis. Frontiers in microbiology, 9: p. 3250.
- 7 Lemarie, G., et al., Effect of chronic ammonia exposure on growth of European seabass (Dicentrarchus labrax) juveniles. Aquaculture, (2004). **229**(1-4): p. 479-491.
- 8 Sinha, A.K., et al., (2012) The interactive effects of ammonia exposure, nutritional status and exercise on metabolic and physiological responses in gold fish (Carassius auratus L.). Aquatic Toxicology, **109**: p. 33-46.
- 9 Li, M., et al., (2014) Effects of ammonia stress, dietary linseed oil and Edwardsiella ictaluri challenge on juvenile darkbarbel catfish Pelteobagrus vachelli. Fish & shellfish immunology, **38**(1): p. 158-165.
- 10 Kronzucker, H., et al., (1998). Dynamic interactions between root NH+ 4 influx and long-distance N translocation in rice [Oryza sativa]: Insights into feedback processes. Plant and Cell Physiology (Japan).
- 11 Sargaonkar, A. and V. Deshpande, (2003).

 Development of an overall index of pollution for surface water based on a general classification scheme in Indian

- context. Environmental monitoring and assessment, **89**(1): p. 43-67.
- 12 Stevenson, R.J., Y. Pan, and H. Van Dam, (1999). Assessing environmental conditions in rivers and streams with diatoms. The diatoms: applications for the environmental and earth sciences, 1(4).
- 13 Association, A.P.H., et al., (1912) Standard methods for the examination of water and wastewater. Vol. 2.: American Public Health Association.
- 14 Barnes, H. and A. Folkard, The determination of nitrites. Analyst, (1951). **76**(907): p. 599-603.
- 15 Dewis, J. and F. Freitas, (1970) Physical and chemical methods of soil and water analysis. FAO Soils Bulletin, (10).
- 16 Winkler, L., (1962). Standard method for the examination of water and waste water body. Prin. Co Ing. Albany, NY.
- 17 Wood, R. and J. Talling, (1988) Chemical and algal relationships in a salinity series of Ethiopian inland waters, in Saline Lakes., Springer. p. 29-67.
- 18 Lutz, D.S., C. Kahler-Royer, and M.J. Petersen, (1997): Water Quality Studies: Red Rock and Saylorville Reservoirs, Des Moines River, Iowa. Sanitary Engineering Section, Engineering Research Institute, Iowa State.
- 19 El-Sheekh, M.M., et al., (2005). Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents. Environmental toxicology and pharmacology, **19(2)**: p. 357-365.
- Abdel-Hamid, M., et al., Water Quality Assessment of El-Salam Canal (Egypt) Based on Physico-Chemical Characteristics in Addition to Hydrophytes and their Epiphytic Algae. *Int J Eco. Develop.* Res, (2017). **3**(1): p. 028-043.
- 21 Howell, C., et al., (2016) Seasonal variation in composition of winery wastewater in the breede River Valley with respect to classical water quality parameters. South African *Journal of Enology and Viticulture*, **37(1):** p. 31-38.
- 22 Bayo, J. and J. López-Castellanos, (2016) Principal factor and hierarchical cluster

- analyses for the performance assessment of an urban wastewater treatment plant in the Southeast of Spain. Chemosphere,. **155**: p. 152-162.
- 23 Ebrahimi, M., E.L. Gerber, and T.D. Rockaway, (2017). Temporal performance assessment of wastewater treatment plants by using multivariate statistical analysis. *Journal of environmental management*, **193**: p. 234-246.
- 24 Banerjee, S., et al., (2016). Seasonal variation in heavy metal contaminations in water and sediments of Jamshedpur stretch of Subarnarekha river, India. Environmental earth sciences, **75**(3): p. 265.
- 25 Gupta, D., S.J. Sunita, and J. Saharan, (2009). Physiochemical analysis of ground water of selected area of Kaithal city (Haryana) India. Researcher 1(2): p. 1-5.
- 26 Leta, S., F. Assefa, and G. Dalhammar, (2003) Characterization of tannery wastewater and assessment of downstream

- pollution profiles along Modjo River in Ethiopia. Ethiopian *Journal of Biological Sciences*,. **2(2):** p. 157-168.
- 27 Edokpayi, J.N., J.O. Odiyo, and O.S. Durowoju, (2017) Impact of wastewater on surface water quality in developing countries: a case study of South Africa. Water quality,: p. 401-416.
- Higgins, C.F., R.S. McLaren, and S.F. Newbury, (1988). Repetitive extragenic palindromic sequences, mRNA stability and gene expression: evolution by gene conversion?—a review. Gene, **72**(1-2): p. 3-14.
- 29 Elser, J.J. and B.L. Kimmel, (1985). Nutrient availability for phytoplankton production in a multiple-impoundment series. Canadian *Journal of Fisheries and Aquatic Sciences*, **42(8):** p. 1359-1370.
- 30 Aliyu, J., Y. Saleh, and S. Kabiru, Heavy (2015). metals pollution on surface water sources in Kaduna metropolis, Nigeria. *Science World Journal*, **10** (2): p. 1-5